카이도스의 Tech Blog
Airflow docker cluster 구성 - 1 본문
728x90
반응형
2024.02.09 - [Airflow] - Airflow docker cluster 구성 - 2
- Airflow 버전 : 2.8.1
- Ubuntu 22.04 LTS
- Airflow Executor : CeleryExecutor
- 설치(마스터 노드) - 10.10.x.x
더보기
# 도커 설치 및 경로 변경
curl -fsSL https://get.docker.com | sh
# 도커 정보 확인 : client - server, Docker Root Dir, Registry
docker info
# 도커 정보 확인 : Docker Engine - Community
docker version
# 도커 프로세스 내리기
sudo systemctl stop docker.service
sudo systemctl stop docker.socket
sudo systemctl status docker.service
sudo systemctl status docker.socket
# 폴더 복사
cd /var/lib
sudo cp -av docker/ /data/
# 도커 폴더 변경
cat <<EOT>> /etc/docker/daemon.json
{
"data-root": "/data/docker"
}
EOT
# 재시작 후 확인
sudo systemctl start docker
sudo systemctl status docker.service
sudo systemctl status docker.socket
# 변경된 디렉터리 확인
sudo docker info | grep "Docker Root Dir"
Docker Root Dir: /data/docker
---------------------------------------------------
#설치
sudo su -
mkdir /data/airflow_master /data/airflow_master/dags /data/airflow_master/logs /data/airflow_master/plugins
sudo chmod 755 /data/airflow_master/dags /data/airflow_master/logs /data/airflow_master/plugins
sudo chown root:root /data/airflow_master/dags /data/airflow_master/logs /data/airflow_master/plugins
cd /data/airflow_master
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/2.8.1/docker-compose.yaml'
# docker-compose 실행
cd /data/airflow_master
docker compose up airflow-init
docker compose up -d
docker compose up -d flower
# 확인
docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
8be9d6084cec apache/airflow:2.8.1 "/usr/bin/dumb-init …" 23 minutes ago Up 23 minutes (healthy) 0.0.0.0:5555->5555/tcp, :::5555->5555/tcp, 8080/tcp airflow_master-flower-1
40b1546dbf41 apache/airflow:2.8.1 "/usr/bin/dumb-init …" 24 minutes ago Up 23 minutes (healthy) 8080/tcp airflow_master-airflow-triggerer-1
e91be32295ad apache/airflow:2.8.1 "/usr/bin/dumb-init …" 24 minutes ago Up 23 minutes (healthy) 8080/tcp airflow_master-airflow-scheduler-1
06e6471e8c91 apache/airflow:2.8.1 "/usr/bin/dumb-init …" 24 minutes ago Up 23 minutes (healthy) 8080/tcp airflow_master-airflow-worker-1
96363982f50e apache/airflow:2.8.1 "/usr/bin/dumb-init …" 24 minutes ago Up 23 minutes (healthy) 0.0.0.0:8080->8080/tcp, :::8080->8080/tcp airflow_master-airflow-webserver-1
d93dda0235fa postgres:13 "docker-entrypoint.s…" 24 minutes ago Up 23 minutes (healthy) 5432/tcp airflow_master-postgres-1
dd32b9310702 redis:latest "docker-entrypoint.s…" 24 minutes ago Up 23 minutes (healthy) 0.0.0.0:6379->6379/tcp, :::6379->6379/tcp airflow_master-redis-1
# FERNET_KEY 및 SECRET_KEY 생성
docker exec -it airflow_master-airflow-scheduler-1 bash
python
>>> from cryptography.fernet import Fernet
>>> FERNET_KEY = Fernet.generate_key().decode()
>>> print(FERNET_KEY)
pZ0i_vrVtawk.....................
python
>>> import os
>>> print(os.urandom(16))
b'\xef\x8a.....................
# docker-compose.yaml 수정(하단 docker-compose.yaml 참고)
cp -pv docker-compose.yaml docker-compose.yaml_bak
vi docker-compose.yml
# .env 생성
vi .env
chmod 755 .env
# 획득한 FERNET_KEY와 SECRET_KEY를 위의 docker-compose.yaml의 AIRFLOW__CORE__FERNET_KEYY에 집어 넣습니다.
cat docker-compose.yaml | grep AIRFLOW__CORE__FERNET_KEY
AIRFLOW__CORE__FERNET_KEY: 'pZ0i_vrVtawkrzgc2nJU8mJvz1R..............'
AIRFLOW__WEBSERVER__SECRET_KEY : b'\xef\x8a\xc7\xc4\xe2\x8c............'
# 컨테이너에 적용
docker compose up --build --force-recreate -d airflow-init
docker compose up --build --force-recreate -d
docker compose up --build --force-recreate -d flower
# 종료
docker compose down
- docker-compose.yaml 내용
더보기
x-airflow-common:
&airflow-common
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.8.1}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://postgres:postgres@IP:5432/airflow_dev_vm
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://postgres:postgres@IP:5432/airflow_dev_vm
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://postgres:postgres@IP:5432/airflow_dev_vm
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: 'KEY'
AIRFLOW__WEBSERVER__SECRET_KEY : KEY
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:- dbt-trino apache-airflow-providers-apache-spark airflow-code-editor apache-airflow-providers-apache-kafka}
AIRFLOW__CORE__DEFAULT_TIMEZONE: 'Asia/Seoul'
AIRFLOW__WEBSERVER__BASE_URL: 'http://IP:8080'
AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
extra_hosts:
- "worker1:IP"
- "worker2:IP"
- "hadoop-master1:IP"
- "hadoop-master2:IP"
- "hadoop-new-slave1:IP"
- "hadoop-new-slave2:IP"
- "hadoop-new-slave3:IP"
- "hadoop-new-slave4:IP"
- "hadoop-new-slave5:IP"
- "hadoop-zookeeper1:IP"
- "dev-hadoop-master1:IP"
- "dev-hadoop-master2:IP"
- "dev-hadoop-slave1:IP"
- "dev-hadoop-slave2:IP"
- "dev-hadoop-slave3:IP"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
- ${AIRFLOW_PROJ_DIR:-.}/scripts:/opt/airflow/scripts
- ${AIRFLOW_PROJ_DIR:-.}/build_sh:/opt/airflow/build_sh
- ${AIRFLOW_PROJ_DIR:-.}/envs:/opt/airflow/envs
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
POSTGRES_DB: airflow_dev_vm
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "postgres"]
interval: 10s
retries: 5
start_period: 5s
restart: always
redis:
image: redis:latest
ports:
- "6379:6379"
expose:
- 6379
healthcheck:
test: [ "CMD", "redis-cli", "ping" ]
interval: 10s
timeout: 30s
retries: 50
start_period: 30s
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- "8080:8080"
healthcheck:
test: [ "CMD", "curl", "--fail", "http://localhost:8080/health" ]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: [ "CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"' ]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
#build: .
hostname: master
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "1"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: [ "CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"' ]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- "5555:5555"
healthcheck:
test: [ "CMD", "curl", "--fail", "http://localhost:5555/" ]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:
- .env 내용
더보기
AIRFLOW_UID=50000
FERNET_KEY=key값
SECRET_KEY=key값
HOSTNAME=master
728x90
반응형
'Airflow' 카테고리의 다른 글
Airflow docker cluster 구성 - 2 (0) | 2024.02.09 |
---|---|
Airflow - 설명 (0) | 2024.02.04 |
Comments